

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Malone O'Regan		
Ground Floor - Unit 3 Bracken Business Park		
Bracken Road		
Sandyford Dublin 18		
Ireland D18 V4K6		TESTING
		4225
		bsi roo haddi Bacarada Competed Competed
Attention :	Enrique Garcia	
Date :	18th February, 2025	
Your reference :	E2343	
Our reference :	Test Report 25/1344 Batch 1	
Location :	Murrens Quarry	
Date samples received :	30th January, 2025	
Status :	Final Report	
Issue :	202502181001	

Four samples were received for analysis on 30th January, 2025 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 16.58 kg of CO2

Scope 1&2&3 emissions - 39.182 kg of CO2

Authorised By:

6 June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Malone O'Regan E2343 Murrens Quarry Enrique Garcia 25/1344

Report : Liquid

 $\label{eq:liquids} \mbox{ Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

EMT Sample No.	1-6	7-12	13-18										
Sample ID	BH01	BH02	BH03										
Depth											Please se	e attached n	otes for all
COC No / misc											abbreviations and acronyms		
Containers	VHPG	VHPG	VHPG										
Sample Date	27/01/2025	27/01/2025	27/01/2025										
	2110 112023	2110 112023	2110 112023										
Sample Type	Ground Water	Ground Water	Ground Water										-
Batch Number	1	1	1									Unite	Method
Date of Receipt	30/01/2025	30/01/2025	30/01/2025								LODIEOIT	onno	No.
Dissolved Aluminium [#]	<20	<20	<20								<20	ug/l	TM30/PM14
Dissolved Arsenic [#]	<2.5	4.4	2.8								<2.5	ug/l	TM30/PM14
Total Dissolved Chromium [#]	<1.5	<1.5	<1.5								<1.5	ug/l	TM30/PM14
Dissolved Lead [#]	<5	<5	<5								<5	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1								<1	ug/l	TM30/PM14
Dissolved Zinc [#]	4	4	<3								<3	ug/l	TM30/PM14
PAH MS													
Naphthalene #	<0.1	<0.1	<0.1								<0.1	ug/l	TM4/PM30
Acenaphthylene #	<0.005	<0.005	<0.005								<0.005	ug/l	TM4/PM30
Acenaphthene #	<0.005	<0.005	<0.005								<0.005	ug/l	TM4/PM30
Fluorene [#]	<0.005	<0.005	0.006								<0.005	ug/l	TM4/PM30
Phenanthrene [#]	<0.005	<0.005	0.010								<0.005	ug/l	TM4/PM30
Anthracene #	<0.005	<0.005	<0.005								<0.005	ug/l	TM4/PM30
Fluoranthene [#]	<0.005	<0.005	0.005								<0.005	ug/l	TM4/PM30
Pyrene [#]	<0.005	<0.005	0.006								<0.005	ug/l	TM4/PM30
Benzo(a)anthracene *	<0.005	< 0.005	<0.005								<0.005	ug/l	TM4/PM30
Chrysene "	<0.005	< 0.005	<0.005								<0.005	ug/l	TM4/PM30
Benzo(bk)fluoranthene"	<0.008	<0.008	<0.008								<0.008	ug/l	TM4/PM30
Benzo(a)pyrene	<0.005	<0.005	<0.005								<0.005	ug/i	TM4/PM30
Dibonzo(ab)anthracono #	<0.005	<0.005	<0.005								<0.005	ug/l	TM4/PM30
Bonzo(ahi)non/lono#	<0.005	<0.005	<0.005								<0.005	ug/l	TM4/PM30
PAH 16 Total [#]	<0.173	<0.173	<0.173								<0.173	ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.008	<0.008	<0.008								<0.008	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.008	< 0.008	<0.008								<0.008	ua/l	TM4/PM30
PAH Surrogate % Recovery	89	87	87								<0	%	TM4/PM30
3													
	1	1		1	1								1

Client Name: Reference: Location: Contact: EMT Job No: Malone O'Regan E2343 Murrens Quarry Enrique Garcia 25/1344

Report : Liquid

 $\label{eq:Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

EMT Sample No.	1-6	7-12	13-18										
Sample ID	BH01	BH02	BH03										
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevi	auons and a	cronyms
Containers	VHPG	VHPG	VHPG										
Sample Date	27/01/2025	27/01/2025	27/01/2025										
Sample Type	Ground Water	Ground Water	Ground Water										
Batch Number	1	1	1										
Data of Resourt	20/01/2025	20/01/2025	20/01/2025								LOD/LOR	Units	Nethod No.
Date of Receipt	30/01/2025	30/01/2023	30/01/2025										
Organochlorine Pesticides													
Aldrin	<0.30ad	<0.01	<0.01								<0.01	ua/l	TM149/PM30
Alpha-HCH (BHC)	<0.30	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Beta-HCH (BHC)	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Delta-HCH (BHC)	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Dieldrin	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Endosulphan I	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Endosulphan II	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Endosulphan sulphate	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Endrin	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Gamma-HCH (BHC)	<0.30 _{AD}	<0.10 _{AC}	<0.10 _{AC}								<0.01	ug/l	TM149/PM30
Heptachlor	<0.30 _{AD}	<0.05 _{AB}	<0.05 _{AB}								<0.01	ug/l	TM149/PM30
Heptachlor Epoxide	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
o,p'-Methoxychlor	<0.30 _{AD}	<0.05 _{AB}	<0.05 _{AB}								<0.01	ug/l	TM149/PM30
p,p'-DDE	<0.30 _{AD}	<0.10 _{AC}	<0.10 _{AC}								<0.01	ug/l	TM149/PM30
p,p'-DDT	<0.30 _{AD}	<0.05 _{AB}	<0.05 _{AB}								<0.01	ug/l	TM149/PM30
p,p'-Methoxychlor	<0.30 _{AD}	<0.05 _{AB}	<0.05 _{AB}								<0.01	ug/l	TM149/PM30
p,p'-TDE	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Organophosphorus Pesticides													
	<0.30AD	<0.01	<0.01								<0.01	ug/i	TM149/PM30
Diazinon	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/i	TM149/PM30
Dichlorvos	<0.30 _{AD}	<0.01	<0.01								<0.01	ug/i	TM149/PM30
Ethion	<0.30AD	<0.01	<0.01								<0.01	ug/i	TM149/PM30
Ethyl Parathion (Parathion)	<0.30AD	<0.01	<0.01								<0.01	ug/l	TM149/PM30
Enitrothion	<0.30AD	<0.01	<0.01								<0.01	ug/i	TM149/PM30
Malathion	<0.30	<0.01	<0.01								<0.01	ua/I	TM149/PM30
Methyl Parathion	<0.30AD	<0.01	<0.01								<0.01	ua/l	TM149/PM30
Mevinphos	<0.30AD	<0.01	<0.01								<0.01	ug/l	TM149/PM30
EPH (C8-C40) (EH_1D_Total) [#]	<10	<10	<10								<10	ug/l	TM5/PM30
Alcohols/Acetates													
Tetrahydrofuran	<10	<10	<10								<10	ug/l	TM83/PM10
Sulphate as SO4 [#]	29.9	49.3	45.7								<0.5	mg/l	TM38/PM0
Chloride [#]	32.4	12.1	4.6								<0.3	mg/l	TM38/PM0
Nitrate as NO3 [#]	0.4	<0.2	4.7								<0.2	mg/l	TM38/PM0
Nitrite as NO2 [#]	<0.02	<0.02	<0.02								<0.02	mg/l	TM38/PM0
MRP Ortho Phosphate as P	<0.03	<0.03	<0.03								<0.03	mg/l	TM38/PM0
	0.07	0.70	0.05								10.00		TM20/DM22
Ammoniacal Nitrogen as NH4*	0.07	0.78	0.05								<0.03	mg/l	
mexavalent Chromium	<0.00b	<0.00b	<0.00b	1	1	1	1		1	1	<0.00b	I III III III III III III III III III	111/138/PM0

Client Name: Reference:	Malone O E2343	'Regan					Report :	Liquid					
Location:	Murrens C	Quarry											
Contact:	Enrique G	arcia					Liquids/pro	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle	
EMT Job No:	25/1344						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	HN0 ₃				
EMT Sample No.	1-6	7-12	13-18										
Sample ID	BH01	BH02	BH03										
Depth											Please se	e attached no	otes for all
COC No / misc											abbrevia	ations and ac	cronyms
Containers	VHPG	VHPG	VHPG										
Sample Date	27/01/2025	27/01/2025	27/01/2025										
Sample Type	Ground Water	Ground Water	Ground Water										
Batch Numbor	1	1	1										
	-	-	-								LOD/LOR	Units	Method No.
Date of Receipt	30/01/2025	30/01/2025	30/01/2025										
Total Alkalinity as CaCO3 *	500	746	176								<1	mg/l	TM75/PM0
Electrical Conductivity @250 #	771	700	386								<2	uS/cm	TM76/PM0
pH [#]	7.53	7.71	8.05								<0.01	pH units	TM73/PM0
F													
	1	1	1	1	1	1		1					1

.

EN-12457-2 Result Report

Element Materia	ais le	chnology	BS EN-12	457-2 Res	ult Repo
Mass of sample taken (kg)	0.1071	Dry Matter Content Ratio (%) =		84.0	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		0.883	
Particle Size <4mm =	>95%				
EMT Job No		25/1344	Landf	ill Waste Ar	centance
Sample No		21		Criteria Lin	nits
Client Sample No		ST01			
Depth/Other		0.00-0.20			
Sample Date		27/01/2025	Inert	Stable	Hazardo
Batch No		1		Non-reactive	
Solid Waste Analysis					
Total Organic Carbon (%)	8.52		3	5	6
Sum of BTEX (mg/kg)	<0.050		6	-	-
Sum of 7 PCBs (mg/kg)	<0.350		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_AL)	6622		500	-	-
PAH Sum of 6 (mg/kg)	1.41		-	-	-
PAH Sum of 17 (mg/kg)	4.00		100	-	-
	10:1				
	concn		Limit	alues for co	ompliance
Eluate Analysis	leached		BSEN	12457-2 at	using L/S 10 l/kc
	A10				
	mg/kg			mg/kg	
Arsenic	<0.025		0.5	2	25
Barium	0.27		20	100	300
Cadmium	<0.005		0.04	1	5
Chromium	<0.015		0.5	10	70
Copper	0.39		2	50	100
Mercury	<0.0001		0.01	0.2	2
Molybdenum	<0.02		0.5	10	30
Nickel	<0.02		0.4	10	40
Lead	<0.05		0.5	10	50
Antimony	0.03		0.06	0.7	5
Selenium	<0.03		0.1	0.5	7
Zinc	0.08		4	50	200
Chloride	16		800	15000	25000

<3

14

<350

<0.1

30

-	1		
 Inert	Stable Non-reactive	Hazardous	
	Non-reactive		
3	5	6	
6	-	-	
1	-	-	
500	-	-	
-	-	-	
100	-	-	
Limit	values for co aching test	ompliance using	
Limit le BS EN	values for co aching test 12457-2 at 1	ompliance using L/S 10 l/kg	
Limit le BS EN	values for co aching test 12457-2 at l mg/kg	ompliance using L/S 10 l/kg	
Limit le BS EN 0.5	values for co aching test 12457-2 at 1 mg/kg 2	ompliance using _/S 10 l/kg 	
Limit le BS EN 0.5 20	values for co aching test 12457-2 at 1 mg/kg 2 100	25 300 5	
Limit le BS EN 0.5 20 0.04	values for co aching test 12457-2 at 1 mg/kg 2 100 1 1	25 300 5 70	
Limit le BS EN 0.5 20 0.04 0.5 2	values for co aching test 12457-2 at 1 mg/kg 2 100 1 10 50	25 300 5 100	
Limit le BS EN 0.5 20 0.04 0.5 2 0.01	values for co aching test 12457-2 at 1 mg/kg 2 100 1 10 50 0 2	25 300 5 70 20 25	
Limit le BS EN 0.5 20 0.04 0.5 2 0.01 0.5	values for co aching test 12457-2 at 1 mg/kg 2 100 1 1 10 50 0.2 10	25 300 5 70 100 2 30	
Limit le BS EN 0.5 20 0.04 0.5 2 0.01 0.5 0.4	values for co aching test 12457-2 at 1 mg/kg 2 100 1 10 50 0.2 10 10	25 300 5 70 100 2 30 40	
Limit le BS EN 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	values for co aching test 12457-2 at 1 mg/kg 2 100 1 10 50 0.2 10 10 10 10	25 300 5 70 100 2 30 40 50	
Limit le BS EN 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06	values for co aching test 12457-2 at 1 mg/kg 2 100 1 1 50 0.2 10 10 10 10 10 0.7	25 300 5 70 100 2 30 40 50 5	
Limit le BS EN 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	values for co aching test 12457-2 at 1 mg/kg 2 100 1 10 50 0.2 10 10 10 10 10 0.7 0.5	25 300 5 70 100 2 30 40 50 5 7 7	
Limit le BS EN 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	values for co aching test 12457-2 at 1 mg/kg 2 100 1 1 50 0.2 10 10 10 10 10 10 0.7 0.5 50	25 300 5 70 100 2 30 40 50 5 7 7 200	

10

1000

4000

1

500

150

20000

60000

-

800

500

50000

100000

-

1000

Fluoride

Phenol

Sulphate as SO4

Total Dissolved Solids

Dissolved Organic Carbon

Client Name:	Malone O'Regan
Reference:	E2343
Location:	Murrens Quarry
Contact:	Enrique Garcia

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason							
	No deviating sample report results for job 25/1344												

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 25/1344

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $35^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

Age of Diesel

The age of release estimation is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996).

Age estimation should be treated with caution as it can be influenced by site specific factors of which the laboratory are not aware.

Tentatively Identified Compounds (TICs)

Where Tentatively Identified Compounds (TICs) are reported, up to 10 Tentatively Identified Compounds will be listed where there is found to be a greater than 80% match with the NIST library. The reported concentration is determined semi-quantitively, with a matrix specific limit of detection. Note, other compounds may be present but are not reported.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
м	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x2 Dilution
AB	x5 Dilution
AC	x10 Dilution
AD	x30 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 25/1344

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35 degrees Celsius or 105 degrees Celsius. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes

Method Code Appendix

EMT Job No: 25/1344

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.	Yes		AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

EMT Job No: 25/1344

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 degrees Celsius. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 degrees Celsius. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) - All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) - All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) - All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) - All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	A hot hydrochloric acid digest is performed on a dried and ground sample, and the resulting liquor is analysed.	Yes		AD	Yes

EMT Job No: 25/1344

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
тм73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM83	Modified USEPA method 8260B v2:1996. Determination of Alcohols, Acetates, Acetone, Fuel Oxygenates, THF and Cyclohexane by Headspace GC-MS	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes

EMT Job No: 25/1344

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.			AR	Yes
TM108	Determination of Elemental Sulphur by Reversed Phase High Performance Liquid Chromatography with Ultra Violet spectroscopy.	PM114	End over end extraction of dried and crushed soil samples for organic analysis. The solvent mix varies depending on analysis required			AD	Yes
TM149	Determination of Pesticides by Large Volume Injection on GC Triple Quad MS, based upon USEPA method 8270D v5:2014	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35 degrees Celsius or 105 degrees Celsius. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Method Code Appendix